Name: \qquad Per: \qquad

Day	Tentative Dates	Assignment (Due the next class meeting)
		Complete First Day Assignments according to Teacher
		1.2 Notes: Solving Linear Equations HW: 1.2 Worksheet, get syllabus signed, pay lab fee \$3
		1.3 Notes: Solving Equations with Variables on Both Sides HW: 1.3 Worksheet
		1.4 Notes: Solving Literal Equations HW: 1.4 Worksheet
		1.5 Notes: Solving Inequalities HW: 1.5 Worksheet
		1.6 Notes: Solving Compound Inequalities HW: 1.6 Worksheet
		Ch 1 Practice Test Study! Test next class! Any late/missing HW is due next class!
		Ch 1 Test HW: None!

NOTE: You should be prepared for daily quizzes.
Every student is expected to do every assignment for the entire unit.

Students who complete every assignment this semester will earn a 2% bonus for their semester grade.

HW reminders:
> If you cannot solve a problem, get help before the assignment is due.
$>$ Missing the notes or a worksheet? Go to www.washoeschools.net/DRHSmath
> Need help? Check out Earl's website: www.mathguy.us

1.2 Notes: Solving Linear Equations
 Learning Objectives

- Solve an equation with variables on one side, including combining like terms and simple distribution.

Key Vocabulary
Solving an equation:

Combining Like Terms:

Addition Property of Equality:

Multiplication Property of Equality:

Linear Equation:

Distributive Property:

Subtraction Property of Equality:

Division Property of Equality:

Examples 1-3: Solve for the variable in each equation.

1) $6 x-8=12$
2) $-3=-2.1 x+3.3$
3) $\frac{8}{11} n+5=-7$

You try 4-6! Solve for the variable in each equation.
4) $\frac{4}{3} a-1=1$
5) $-4=-6 h-4$
6) $-4.4 b-3=17$

Combining Like Terms:

Example 7: What is the value of a in the equation shown? $5 a-7 a+9=20$

You try \#8! Solve for g in the equation shown: $25-5 g+8 g=7$

The Distributive Property:

Example 9: Solve the equation for the variable: $2(7-5 h)=20$.

Now solve the same equation with a different

Solve this same equation by using a different method. $\frac{2(x+4)}{3}-8=32$
strategy! $2(7-5 h)=20$

Example 10: What is the value of x in the equation shown? $\frac{2(x+4)}{3}-8=32$

Associative Property (of addition or multiplication):
Terms can be grouped together differently with addition or multiplication. Note: the order of the numbers is not changed.

Sample: $(3+5)+2=3+(5+2)$
Sample: $(3 \cdot 5) 2=3(5 \cdot 2)$

Commutative Property (of addition or multiplication):
Terms that are added (or multiplied) can b written in any order.

$$
\text { Sample: } 3+2=2+3
$$

Sample: $3 \cdot 2=2 \cdot 3$
Example 11: The equation below is solved step-by-step. Write property that describes each step.

Solution	Property used
$\frac{4(3 x+2)+5 x}{7}=-9$	Given equation
$4(3 x+2)+5 x=-63$	
$12 x+8+5 x=-63$	
$12 x+5 x+8=-63$	
$17 x=-71$	
$x=-\frac{71}{17}$	

Example 12: Solve for the variable: $-\frac{1}{6}(5 y+20)=-3$

Example 13: Three friends split the cost of ordering pizza, and they each pay $\$ 13$. Which of the following equations models this situation, if p is the cost of the pizza?
A) $p=\frac{13}{3}$
B) $3 p=13$
C) $\frac{13}{p}=3$
D) $\frac{p}{3}=13$

You try \#14: Trevor hires a landscaping company in order to xeriscape his yard. The company charges $\$ 800$ per day, plus $\$ 120$ per hour for labor. The job takes the company 3 days to complete, and the total charge was $\$ 4560$. Which equation below correctly models this situation, if h is the number of hours of labor needed to complete the job?
A) $120 h+800=4560$
B) $120 h+2400=4560$
C) $800 h+120=4560$
D) $800 h+360=4560$

Example 15: Four friends use an online code to get discounts on concert tickets. They spent $\$ 312$ for the four tickets.

Part A: Which of the following equations models this situation for the cost T of the tickets, without the discount?

Option 1: $4 T+15=312$
Option 2: $4 T-15=312$
Option 3: $4 \mathrm{~T}+60=312$
Option 4: $4 \mathrm{~T}-60=312$
Part B: What was the price of one ticket, T, without the discount?

Your online order is complete.		
c C C C		
Your order details are shown below for your reference.		
ORDER \# 328 Sec B, Row 10, Seats 13-16		
	Quantity	Price
Tickets	4	?
Discount	\$15.00	$4 \times \$ 15.00$
Order Total		\$312

1.3 Notes: Solving Equations with Variables on Both Sides
 Learning Objectives

- Solve an equation with variables on both sides, including combining like terms and simple distribution of a negative.
- Recognize an equation with infinite or no solution.

Warm-up:

1) Solve for $x: 15-2(x-4)=31 \quad$ 2) Solve for $x: \frac{1}{4}(2 x-3)=8$

Solving Equations with the Same Variable on Both Sides

Examples 1-4: Solve for the variable.

1) $5 n-8=-6 n+30$
2) You try! $50-2 a=34+16 a$
3) $20 g+31-24 g=16-g$
4) You try! $13+7 b=4 b+6-12 b$

Example 5: Solve for b :

$$
5 b-3(2 b+1.8)=-6 b+9
$$

Solving Equations and Inequalities
Example 6: You try! Solve for w :

$$
6-3(2-4 w)+8 w=12 w-1
$$

Example 7: Solve for x :

$$
-\frac{3}{4}(3 x-5)=\frac{5}{4}(2 x+19)
$$

Example 8: You try! Solve for the variable: $\frac{1}{5}(2-7 k)=-2(4 k+3)$

Example 9: Solve for $y: \quad \frac{3}{7}(5 y-21)=2(3-4 y)-5$

Exploration: Solve for x : $4 x+6=2(2 x+3)$

What do you think this means?
Vocabulary terms:
Identity:

No Solution:

Example 10: Solve for $h: 5(7+2 g)=3 g+18+7 g$

Example 11: Which of the following equations has no solution? Choose all that apply.
A) $6 x-7=4 x+10-17+2 x$
B) $3 x-2(5 x+4)=-7 x+1$
C) $8 x+5=8 x+2$
D) $3 x-9=3(x-3)$

Example 12: Sarah has a gift card worth $\$ 60$ that loses $\$ 3$ each month that it isn't used. Max has a gift card worth $\$ 50$ that loses $\$ 2$ each month that it isn't used. After how many months will they be worth the same amount?

Example 13: Cameron pays $\$ 0.95$ per song with his current music service. A new music service charges $\$ 0.89$ per song plus a joining fee of $\$ 12$. At how many songs will both services charge the same amount?

1.4 Notes: Literal Equations and Formulas
 Learning Objectives

- Solve for the requested variable in a literal equation, especially solving for \mathbf{y} in $\mathrm{Ax}+\mathrm{By}=\mathrm{C}$

Warm-up:

1) Solve for x : $\quad 1-\frac{2}{3}(x-5)=2$
2) Solve for x : $5(2 x+3)+7 x=6 x+10-4 x$
3) Explain the difference between an equation with no solution and an equation that is an identity. How do you know which is which?

Literal Equation:

For Examples 1 - 6, solve for the requested variable.

1) $A=b h$; solve for h
2) $5 x+2 y=40$; solve for y
3) $V=\frac{1}{3} l w h$; solve for w.

You try!
4) $V=\frac{1}{3} B h$; solve for $B . \quad$ 5) $S A=6 l w$; solve for $l . \quad$ 6) $3 x+2 y=12$; solve for y.

Example 7: Janet wants to calculate the time it takes to earn a certain amount of interest on a principle amount in an investment with simple interest. If the formula for simple interest is $I=p r t$, then what formula could she use to solve for time t ?

Example 8: Rob is an electrical engineer who works with lots of wires. He needs to calculate the length of the wire L (in meters) using the electrical resistance R of the wires (in ohms), the resistivity ρ (in ohm meters), and the area of the wire A (in square cm). The formula for electrical resistance is $R=\frac{\rho L}{A}$. What equation can he use to solve for the length of the wire?

Example 9: In a half hour, Sarah is meeting her friends at the lake, which is 6 mi from her house. At what average speed must she ride her bike to get there on time, if $d=r t$, where d is distance, r is rate, and t is time in hours?

Example 10: The formula for the area of a trapezoid is $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$. Solve the equation for the height h. Then find the height of the trapezoid if its area A is 50 square cm , and the bases b_{1} and b_{2} are 6 cm and 12 cm .

Example 11: According to Teo's bread recipe, he should bake the bread at $190^{\circ} \mathrm{C}$ for 30 minutes. His oven measures temperatures in ${ }^{\circ} \mathrm{F}$. To what temperature in ${ }^{\circ} \mathrm{F}$ should he set his oven? Note: use $C=\frac{5}{9}(F-32)$ where C is degrees in Celsius and F is degrees in Fahrenheit.

Example 12: Given the equation: $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$. Which of the following shows the correct solution for b_{1} ? Choose all that apply.
A) $\frac{2 A}{h}-b_{2}$
B) $\frac{2 A-h b_{2}}{h}$
C) $\frac{A}{2 h}+b_{2}$
D) $\frac{A-b_{2}}{2 h}$

1.5 Notes: Solving Inequalities in One Variable
 Learning Objectives

- Solve and graph inequalities in one variable.
- Switch an inequality sign when it is appropriate (when multiplying or dividing by a negative)
- Recognize an inequality with infinite or no solutions.

Warm-up:

1) Solve for $a: \quad \frac{2}{3}(a-4)=\frac{4}{5}(2+3 a) \quad$ 2) Solve for b, in terms of $a: 3 a b-2=8$

Exploration: Consider each inequality below. Find as many values for x as possible that would make each statement true.
A) $x<-3$
B) $x \geq 2.4$

Examples 1-3: Solve each inequality for the variable. Then graph the solution set.

1) $3 a-5>7$
2) $4 \geq 2 x+1$
3) $\frac{2}{3} b<-4$

You Try! \#4 - 6: Solve each inequality for the variable. Then graph the solution set.
4) $\frac{1}{4} a-1>-3$
5) $4 \geq 4 x-12$
6) $6 b+2<-4$

Example 7: Grace's mom told her she could spend up to $\$ 25$ at the movie theater. Her ticket cost $\$ 11.00$.
Which inequality below correctly models this situation, if Grace spends d dollars? This graph the solution set.
A) $d+11<25$
B) $d-11 \leq 25$
C) $d+11 \leq 25$
E) $d-11<25$

Multiplying or Dividing Both Sides of an Inequality by a Negative

Examples 8-11: Solve for the variable. Graph the solution on the provided number line. 8) $-5 n+3>13$
9) $4 x+8 \leq 7 x+3$

You try \#10-11!
10) $7 b+11 \geq 9 b+3$
11) $-\frac{d}{2}+3<9$

Example 12: Solve for x and graph the solution on the number line provided: $-5 x+3(2 x+8)-12<22$

You try: 13) Solve for the variable and graph the solution on the number line. $\quad 3-2(5 a-1)<7 a+10$

Example 14: Solve for x and graph the solution on the number line provided: $\frac{5 x-3}{6} \leq 4$

Example 15: Solve for b and graph the solution on the number line provided: $4(2 b+8)<4(2 b-3)$

Example 16: Solve for h and graph the solution on the number line provided: $4(h-1) \geq 2(2 h-2)$

Infinitely Many Solutions versus No Solution

You try! Example 17: Solve for h and graph the solution on the number line provided: $3(2 h+6)>2(3 h+9)$

Example 18: Derek wants to order some roses online. For what number of roses is it less expensive to order from Florist A? Florist B?

1.6 Notes: Solving Compound Inequalities
 Learning Objectives

- Solve and graph compound inequalities.

Warm-up:

Sarah said the solution for the equation below is $x>3$. Describe her mistake in words. What is the correct solution?
$-5(x-2)>-5$
$-5 x+10>-5$
$-5 x>-15$
$x>3$

Compound Inequalities:

"And"
"Or"

Explore:

Part A) Write down all numbers that you can think of that are less than 4 and greater than -2 . Then express this solution as a compound inequality and a graph on a number line.

Part B) Write down all numbers that you can think of that are less than -2 or greater than 4 . Then express this solution as a compound inequality and a graph on a number line.

Examples 1-4: For each graph below, write a compound inequality.
1)

2)

You try!
3)

4)

Examples 5-6: Translate the verbal phrase into an inequality. Then graph the inequality.
5) All real numbers that are less than or equal to 11.5 and greater than or equal to -3 .
6) All real numbers that are greater than 4 or less than or equal to -2 .

You try! Examples 7 - 8: Translate the verbal phrase into an inequality. Then graph the inequality.
7) All real numbers that are greater than 7 or less than or equal to 5.1 .
8) All real numbers that are less than or equal to 9 and greater than or equal to -2 .

Examples 9-14: Solve and graph each compound inequality.
9) $-1 \leq 9+2 n<17$

You try \#11 and 12!
11) $-36<3 p-6<-15$

13) $-1+5 n>-26$ and $7 n-2 \leq 12$
14) $6+7 m<6 m-5$ or $3 m-7<5+6 m$

